Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 29(5): 878-887, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534523

RESUMO

PURPOSE: Patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) have poor outcomes and require new therapies. In AML, autocrine production of hepatocyte growth factor (HGF) drives MET signaling that promotes myeloblast growth and survival, making MET an attractive therapeutic target. MET inhibition exhibits activity in AML preclinical studies, but HGF upregulation by the FGFR pathway is a common mechanism of resistance. PATIENTS AND METHODS: We performed preclinical studies followed by a Phase I trial to investigate the safety and biological activity of the MET inhibitor merestinib in combination with the FGFR inhibitor LY2874455 for patients with R/R AML. Study Cohort 1 underwent a safety lead-in to determine a tolerable dose of single-agent merestinib. In Cohort 2, dose-escalation of merestinib and LY2874455 was performed following a 3+3 design. Correlative studies were conducted. RESULTS: The primary dose-limiting toxicity (DLT) observed for merestinib alone or with LY2874455 was reversible grade 3 transaminase elevation, occurring in 2 of 16 patients. Eight patients had stable disease and one achieved complete remission (CR) without measurable residual disease. Although the MTD of combination therapy could not be determined due to drug supply discontinuation, single-agent merestinib administered at 80 mg daily was safe and biologically active. Correlative studies showed therapeutic plasma levels of merestinib, on-target attenuation of MET signaling in leukemic blood, and increased HGF expression in bone marrow aspirate samples of refractory disease. CONCLUSIONS: We provide prospective, preliminary evidence that MET and FGFR are biologically active and safely targetable pathways in AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Estudos Prospectivos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Indução de Remissão , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
2.
Mol Cancer Res ; 19(8): 1283-1295, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33931487

RESUMO

Pancreatic cancer is characterized by aberrant activity of oncogenic KRAS, which is mutated in 90% of pancreatic adenocarcinomas. Because KRAS itself is a challenging therapeutic target, we focused on understanding key signaling pathways driven by KRAS as a way to reveal dependencies that are amenable to therapeutic intervention. Analyses in primary human pancreatic cancers and model systems revealed that the receptor for the cytokine leukemia inhibitory factor (LIF) is downregulated by mutant KRAS. Furthermore, downregulation of the LIF receptor (LIFR) is necessary for KRAS-mediated neoplastic transformation. We found LIFR exerts inhibitory effects on KRAS-mediated transformation by inhibiting expression of the glucose transporter GLUT1, a key mediator of the enhanced glycolysis found in KRAS-driven malignancies. Decreased LIFR expression leads to increased GLUT1 as well as increases in glycolysis and mitochondrial respiration. The repression of GLUT1 by LIFR is mediated by the transcription factor STAT3, indicating a tumor-suppressive role for STAT3 within cancer cells with mutated KRAS. Finally, reflecting a clinically important tumor-suppressive role of LIFR, decreased LIFR expression correlates with shorter survival in pancreatic cancer patients with mutated KRAS. Similar findings were found in non-small cell lung cancers driven by mutated KRAS, suggesting that silencing LIFR is a generalized mechanism of KRAS-mediated cellular transformation. These results indicate that the LIFR/STAT3 pathway may mediate either tumor-promoting or tumor-suppressive signaling pathways depending on the genetic background of tumor cells, and may play diverse roles within other cells in the tumor microenvironment. IMPLICATIONS: Mutant KRAS drives downregulation of the receptor for LIF, thereby allowing an increase in expression of the glucose transporter GLUT1 and increases in glycolysis and mitochondrial respiration.


Assuntos
Regulação para Baixo/genética , Glicólise/genética , Fator Inibidor de Leucemia/genética , Neoplasias Pulmonares/genética , Mutação/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Camundongos , Células NIH 3T3 , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética
3.
Cancers (Basel) ; 13(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374980

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive cancer defined by loss-of-function mutations with few therapeutic options. We examined the contribution of the transcription factor Signal transducer and activator of transcription 3 (STAT3) to cell growth and gene expression in preclinical models of MPM. STAT3 is activated in a variety of tumors and is thought to be required for the maintenance of cancer stem cells. Targeting STAT3 using specific small hairpin RNAs (shRNAs) or with the pharmacologic inhibitors atovaquone or pyrimethamine efficiently reduced cell growth in established cell lines and primary-derived lines while showing minimal effects in nontransformed LP9 mesothelial cells. Moreover, atovaquone significantly reduced viability and tumor growth in microfluidic cultures of primary MPM as well as in an in vivo xenotransplant model. Biological changes were linked to modulation of gene expression associated with STAT3 signaling, including cell cycle progression and altered p53 response. Reflecting the role of STAT3 in inducing localized immune suppression, using both atovaquone and pyrimethamine resulted in the modulation of immunoregulatory genes predicted to enhance an immune response, including upregulation of ICOSLG (Inducible T-Cell Costimulator Ligand or B7H2). Thus, our data strongly support a role for STAT3 inhibitors as anti-MPM therapeutics.

4.
Blood Adv ; 2(23): 3428-3442, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30504235

RESUMO

To identify novel therapeutic targets in acute myeloid leukemia (AML), we examined kinase expression patterns in primary AML samples. We found that the serine/threonine kinase IKBKE, a noncanonical IkB kinase, is expressed at higher levels in myeloid leukemia cells compared with normal hematopoietic cells. Inhibiting IKBKE, or its close homolog TANK-binding kinase 1 (TBK1), by either short hairpin RNA knockdown or pharmacological compounds, induces apoptosis and reduces the viability of AML cells. Using gene expression profiling and gene set enrichment analysis, we found that IKBKE/TBK1-sensitive AML cells typically possess an MYC oncogenic signature. Consistent with this finding, the MYC oncoprotein was significantly downregulated upon IKBKE/TBK1 inhibition. Using proteomic analysis, we found that the oncogenic gene regulator YB-1 was activated by IKBKE/TBK1 through phosphorylation, and that YB-1 binds to the MYC promoter to enhance MYC gene transcription. Momelotinib (CYT387), a pharmacological inhibitor of IKBKE/TBK1, inhibits MYC expression, reduces viability and clonogenicity of primary AML cells, and demonstrates efficacy in a murine model of AML. Together, these data identify IKBKE/TBK1 as a promising therapeutic target in AML.


Assuntos
Quinase I-kappa B/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Camundongos Endogâmicos NOD , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteômica , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
5.
Invert Neurosci ; 18(4): 12, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30276482

RESUMO

The American lobster, Homarus americanus, is a model for investigating the neuromodulatory control of physiology and behavior. Prior studies have shown that multiple classes of chemicals serve as locally released/circulating neuromodulators/neurotransmitters in this species. Interestingly, while many neuroactive compounds are known from Homarus, little work has focused on identifying/characterizing the enzymes responsible for their biosynthesis, despite the fact that these enzymes are key components for regulating neuromodulation/neurotransmission. Here, an eyestalk ganglia-specific transcriptome was mined for transcripts encoding enzymes involved in neuropeptide, amine, diffusible gas and small molecule transmitter biosynthesis. Using known Drosophila melanogaster proteins as templates, transcripts encoding putative Homarus homologs of peptide precursor processing (signal peptide peptidase, prohormone processing protease and carboxypeptidase) and immature peptide modifying (glutaminyl cyclase, tyrosylprotein sulfotransferase, protein disulfide isomerase, peptidylglycine-α-hydroxylating monooxygenase and peptidyl-α-hydroxyglycine-α-amidating lyase) enzymes were identified in the eyestalk assembly. Similarly, transcripts encoding full complements of the enzymes responsible for dopamine [tryptophan-phenylalanine hydroxylase (TPH), tyrosine hydroxylase and DOPA decarboxylase (DDC)], octopamine (TPH, tyrosine decarboxylase and tyramine ß-hydroxylase), serotonin (TPH or tryptophan hydroxylase and DDC) and histamine (histidine decarboxylase) biosynthesis were identified from the eyestalk ganglia, as were those responsible for the generation of the gases nitric oxide (nitric oxide synthase) and carbon monoxide (heme oxygenase), and the small molecule transmitters acetylcholine (choline acetyltransferase), glutamate (glutaminase) and GABA (glutamic acid decarboxylase). The presence and identity of the transcriptome-derived transcripts were confirmed using RT-PCR. The data presented here provide a foundation for future gene-based studies of neuromodulatory control at the level of neurotransmitter/modulator biosynthesis in Homarus.


Assuntos
Aminas/metabolismo , Enzimas/análise , Nephropidae/enzimologia , Neuropeptídeos/biossíntese , Neurotransmissores/biossíntese , Animais , Gânglios dos Invertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...